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Abstract
We describe a system that can separate and recognize the simulta-
neous speech of two speakers from a single channel recording and
compare the performance of the system to that of human subjects.

The system, which we callIroquois, uses models of dynamics
to achieve performance near that of human listeners, when aver-
aged across all conditions. However the system exhibits a pattern
of performance across conditions that is different from that of hu-
man subjects. In conditions where the amplitude of the speakers
is similar, our surpasses human performance by over 50%. We
hypothesize that the system accomplishes this remarkable feat by
employing a different strategy to that of the human auditory sys-
tem.

1. Introduction
Listening to and understanding the speech of two people when they
talk simultaneously is a difficult task and has been considered one
of the most challenging problems for automatic speech recogni-
tion. The ICSLP 2006 Speech Separation Challenge [1] gives us
an opportunity to demonstrate the importance of temporal dynam-
ics at an acoustic and sentence level, and to contrast the system
performance to that of human subjects.1

Single-channel speech separation has previously been at-
tempted using Gaussian mixture models (GMMs) on individual
frames of acoustic features. However such models tend to per-
form well only when speakers are of different gender or have
rather different voices [3]. When speakers have similar voices,
speaker-dependent mixture models cannot unambiguously identify
the component speakers. In such cases it is helpful to model the
temporal dynamics of the speech. Several models in the literature
have attempted to do so either for recognition [4, 5] or enhance-
ment [6, 7] of speech. Such models have typically been based on a
discrete state hidden Markov model (HMM) operating on a frame-
based acoustic feature vector.

One of the challenges of such modeling is that speech contains
patterns at different levels of detail, that evolve at different time-
scales. For instance, two major components of the voice are the ex-
citation, which consists of pitch and voicing, and the filter, which
consists of the formant structure due to the mouth position. The
pitch appears in the short-time spectrum as a closely-spaced har-
monic series of peaks, whereas the formant structure has a smooth
frequency envelope. The formant structure and voicing are closely
related to the phoneme being spoken, whereas the pitch evolves
somewhat independently of the phonemes during voiced segments.

At small time-scales these processes evolve in a somewhat
predictable fashion, with relatively smooth pitch and formant tra-
jectories, interspersed with sharper transients. If we begin with
a Gaussian mixture model of the log spectrum, we can hope to

1We expand upon the conference version presented at ICSLP 2006[2].

capture something about the dynamics of speech by just looking
at pair-wise relationships between the acoustic states ascribed to
individual frames of speech data.

In addition to these low-level acoustical constraints, there
are linguistic constraints that describe the dynamics of syllables,
words, and sentences. These constraints depend on context over a
longer time-scale and hence cannot be modeled by pair-wise rela-
tionships between acoustic states. In speech recognition systems
such long-term relationships are handled using concatenated left-
to-right models of context-dependent phonemes, that are derived
from a grammar or language model.

Typically models in the literature have focused on only one
type of dynamics, although some models have factored the dy-
namics into excitation and filter components [8]. Here we explore
the combination of low-level acoustic dynamics with high-level
grammatical constraints. We compare three levels of dynamic con-
straints: simple GMM models of the log spectrum with no dynam-
ics, acoustic-level HMM dynamics, and a layered combination of
acoustic-level and grammar-level dynamics. The models are com-
bined at the observation level using a nonlinear model known as
Algonquin, which models the sum of log-normal spectrum mod-
els. Inference on the state level is carried out using an iterative
two-dimensional Viterbi decoding scheme.

Using both acoustic and sentence level dynamics our signal
separation system, which we callIroquois, produces remarkable
results: it is often able to extract two utterances from a mixture
even when they are from the same speaker.2.

The system is composed of the three components: a speaker
identification and gain estimation component, a signal separation
component, and a speech recognition system.

Section two and three describe the acoustic model and dy-
namics of the signal separation system. Section four describes the
speaker identification and gain estimation system, section five de-
scribes the speaker-dependent labeling (SDL) recognizer, and sec-
tion six describes the experiments and results.

2. Acoustic Models and Likelihood
Estimation

The speech separation challenge involves recognizing speech in
files that are mixtures of two component signals,xa

t andxb
t .

The model for mixed speech in the time domain is (omitting
the channel)yt = xa

t + xb
t whereyt denotes the mixed signal at

time t. We approximate this relationship in the log power spectral
domain as

p(y|xa,xb) = N(y; ln(exp(xa) + exp(xb)),Ψ) (1)

whereΨ is introduced to model the error due to the omission of
phase, and time has been omitted for simplicity.

2Audio samples and further information can be found at
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Figure 1: Graphical models of the feature layer of our separation
system. In (a) all dependencies are shown. In (b) the source fea-
turesxa andxb have been integrated out.

We model the conditional probability of the log-power spec-
trum of the each source signal given their acoustic state as
gaussian:p(xa|sa) = N(xa; µsa , Σsa).

The joint distribution of the observation and source features
given the source states is:

p(y,xa,xb|sa, sb)=p(y|xa,xb)p(xa|sa)p(xb|sb). (2)

Figure 1 depicts graphical models describing the relationships be-
tween the random variables of the feature layer of our speech sep-
aration system.

2.1. Likelihood Estimation

Unlike a traditional recognizer, we take into account the joint evo-
lution of the two signals simultaneously. We therefore need to
evaluate the joint state likelihoodp(y|sa, sb) at every time step.

The iterative Newton-Laplace method Algonquin [3] can
be used to accurately approximate the conditional posterior
p(xa,xb|sa, sb) from (2) as Gaussian, and to compute an ana-
lytic approximation to the observation likelihoodp(y|sa, sb). The
approximate joint posteriorp(xa,xb|y) is therefore a GMM and
the minimum mean squared error (MMSE) estimatorsE[xi|y] or
the maximuma posteriori (MAP) state-based estimate(ŝa, ŝb) =
arg maxsa,sb p(sa, sb|y) may be analytically computed and used
to form an estimate ofxa andxb, given a prior for the joint state
{sa, sb}.

We used 256 Gaussians, one per acoustic state, to model the
acoustic space of each speaker. Dynamic state priors on these
acoustic states are described in section three, In this case, the com-
putation ofp(y|sa, sb) requires the evaluation of2562 or over 65k
state combinations.

2.2. Fast Likelihood Estimation

In order to speed up the evaluation of the joint state likelihood, we
employed bothband quantization of the acoustic Gaussians and
joint-state pruning.

One source of computational savings stems from the fact that
some of the Gaussians in our model may differ only in a few fea-
tures. Band quantization addresses this by approximating each
of the D Gaussians of each model with a shared set ofd Gaus-
sians, whered ≪ D, in each of theF frequency bands of

http : //www.research.ibm.com/speechseparation

the feature vector. A similar idea is described in [9]. It relies
on the use of a diagonal covariance matrix, so thatp(xa|sa) =Q

f
N(xa

f ; µf,sa , σ2
f,sa), whereσ2

f,sa are the diagonal elements

of covariance matrixΣsa . The mappingMf (si) associates each
of theD Gaussians with one of thed Gaussians in bandf . Now
p̂(xa|sa) =

Q
f

N(xa
f ; µf,Mf (sa), σ

2
f,Mf (sa)) is used as a surro-

gate forp(xa|sa).

Under this model thed Gaussians are chosen to minimize the
KL-distanceD(p(xa|sa)||p̂(xa|sa)), and likewise forsb. Then in
each frequency band, onlyd × d, instead ofD × D combinations
of Gaussians have to be evaluated to computep(y|sa, sb).

Despite the relatively small number of componentsd in each
band, taken across bands, the model is in theory capable of ex-
pressingdF distinct patterns. In practice only a subset of the pos-
sible patterns match the Gaussians in a given model well enough
to achieve good results. In our case, we acheived good results with
d = 8 andD = 256. This saved over three orders of magnitude
of computation time over the exhaustive approach.

Another source of computational savings comes from the
sparseness of the model. Only a handful ofsa, sb combinations
have likelihoods that are significantly larger than the rest for a
given observation. Only these states are required to adequately
explain the observation. By pruning the total number of combi-
nations down to a smaller number we can speed up the likelihood
calculation, estimation of the components signals, as well as the
temporal inference.

However, we must evaluate the likelihoods in order to deter-
mine which states to retain. Therefore we use faster approxima-
tions to initially estimate the likelihoods, followed by slower but
more accurate methods after pruning. Themax approximation
[4, 10] provides an efficient approximation to the joint observa-
tion likelihood. The max approximation assumesp(y|sa, sb) =
pxa(y|sa) if the meanµa of xa is larger than the meanµb of xb

andp(y|sa, sb) = pxb(y|sb) otherwise.

We relied on the max approximation for speaker identifica-
tion and gain estimation. For signal separation we used band-
quantization to perform state pruning, and then Algonquin method
on the pruned states using the original un-quantized parameters. In
the experiments reported here, we pruned down to 256 state com-
binations. The effect of these speedup methods on accuracy will
be reported in a future publication.

3. Temporal Dynamics

In a traditional speech recognition system, speech dynamics are
captured by state transition probabilities. We took this approach
and incorporated bothacoustic dynamics andgrammar dynamics
via state transition probabilities.

3.1. Acoustic dynamics

To capture acoustic level dynamics, which directly models the dy-
namics of the log-spectrum, we estimated transition probabilities
between the 256 acoustic states for each speaker. The acoustic
dynamics of the two independent speakers are modeled by state
transitionsp(sa

t+1|s
a
t ) andp(sb

t+1|s
b
t) for speaker a and b respec-

tively, as shown in Figures 2(a) and 2(b). Hence, for each speaker
c, we estimated a256 × 256 component transition matrixAc.
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Figure 2: Graph of acoustic HMM model for two sources. In (a),
the two state chains are shown separately. In (b), thesa andsb are
combined into a Cartesian product state(sasb). In (c) a Cartesian
product of two grammarsva andvb has been added on top of the
acoustic state sequence. Note that this makes the graphical model
loopy.

3.2. Grammar dynamics

The grammar dynamics are modeled by grammar state transitions,
p(vc

t+1|v
c
t ), which consist of left-to-right phone models. The legal

word sequences are given by the Speaker Separation Challenge
grammar [1] and are modeled using pronunciations that map to
three-state context-dependent phone models. The sequences of
phone states for each pronunciation, along with self-transitions
produce a Finite State Machine (FSM). The state transition proba-
bilities derived from this machine are sparse in the sense that most
state transition probabilities are zero.

For a given speaker, the FSM of our system has 506 grammar
statesv. We then model speaker dependent distributionsp(sc|vc)
that associate the FSM states to the speaker-dependent acoustic
states. These are learned from training data where the grammar
state sequences and acoustic state sequences are known for each
utterance. This combined model is depicted in Figure 2(c).

To combine the acoustic dynamics with the grammar dy-
namics, it was useful to avoid modeling the full combination
of s and v states in the joint transitionsp(sc

t+1|s
c
t , vt). In-

stead we make a naive-Bayes assumption to approximate this as
1
z
p(sc

t+1|s
c
t)p(sc

t+1|vt+1), wherez is the normalizing constant.

3.3. 2D Viterbi search

The Viterbi algorithm estimates the maximum-likelihood state se-
quences1..T given the observationsx1..T . The complexity of the
Viterbi search isO(TD2) whereD is the number of states andT
is the number of frames. For producing MAP estimates of the 2
sources, we require a 2 dimensional Viterbi search which finds the
most likely joint state sequencessa

1..T andsb
1..T given the mixed

signaly1..T as was proposed in [4].
On the surface, the 2D Viterbi search appears to be of com-

plexity O(TD4). Surprisingly, it can be computed inO(TD3)
operations. This stems from the fact that the dynamics for each
chain are independent. It is easy to show, for example, how the
dynamics decouple in a forward inference algorithm:

p(sa
t , sb

t |y1..t)

=
X

sa
t−1

sb
t−1

p(sa
t |s

a
t−1)p(sb

t |s
b
t−1)p(sa

t−1, s
b
t−1|y1..t−1)

=
X
sa

t−1

p(sa
t |s

a
t−1)
X
sb

t−1

p(sb
t |s

b
t−1)p(sa

t−1, s
b
t−1|y1..t−1).

Computing the inner sum takesO(D3) operations and can be
stored inO(D2) memory, and the outer sum is of the same com-
plexity. The backward inference algorithm is of the same com-
plexity. In general the forward-backward algorithm for a factorial
HMM with N state variables requires onlyO(TNDN+1) rather
than theO(TD2N ) required for a naive implementation [11].

In the Viterbi algorithm, we wish to find the most probable
paths leading to each state by finding the two argumentssa

t−1 and
sb

t−1 of the following maximization:

max
sa

t−1
sb

t−1

p(sa
t |s

a
t−1)p(sb

t |s
b
t−1)p(sa

t−1, s
b
t−1|y1..t−1)

= max
sa

t−1

p(sa
t |s

a
t−1) max

sb
t−1

p(sb
t |s

b
t−1)p(sa

t−1, s
b
t−1|y1..t−1).

For each statesb
t , we first compute the inner maximum oversb

t−1

as a function ofsa
t−1, and store the max value and its argument.

Then we compute, for each statesa
t andsb

t , the outer maximum
oversa

t−1, using the inner max evaluated atsa
t−1. Finally, we look

up the stored argument,sb
t−1, of the inner maximization evalu-

ated at the maxsa
t−1, for each statesa

t andsb
t . Again we require

O(D3) operations withO(D2) storage for each step. In gen-
eral, as with the forward-backward algorithm, theN -dimensional
Viterbi search requiresO(TNDN+1) operations.

We can also exploit the sparsity of the transition matrices and
observation likelihoods, by pruning unlikely values. Using both of
these methods our implementation of 2D Viterbi search is faster
than the acoustic likelihood computation that serves as its input,
for the model sizes and grammars chosen in the speech separation
task.

3.4. Methods of Inference

In our experiments we performed inference in three different con-
ditions: without dynamics, with acoustic dynamics, and with
acoustic and grammar dynamics. Without dynamics the source
models reduce to GMMs and we infer MMSE estimates of the



sources based onp(xa, xb|y) as computed analytically from (2)
via Algonquin as discussed in section 2.1.

In the acoustic dynamics condition, the exact inference al-
gorithm uses the 2D Viterbi search, with acoustic temporal con-
straintsp(st|st−1) and likelihoods from Eqn. (2), to find the most
likely joint state sequences1..T .

In the grammar dynamics condition we use the model of sec-
tion 3.2. Exact inference is computationally complex because
the full joint distribution of the grammar and acoustic states,
(va × sa) × (vb × sb) is required and is very large in number.

Instead we perform approximate inference by alternating the
2D Viterbi search between two factors: the Cartesian productsa×
sb of the acoustic state sequences and the Cartesian productva ×
vb of the grammar state sequences. When evaluating each state
sequence we hold the other chain constant, which decouples its
dynamics and allows for efficient inference.

This is a useful factorization because the statessa andsb inter-
act strongly with each other and similarly forva andvb. In fact, in
the same-talker condition the corresponding states exhibit an ex-
actly symmetrical distribution. The 2D Viterbi search breaks this
symmetry on each factor. Details of various alternative approxi-
mate inference strategies for this model will be explored in future
publications.

Once the maximum likelihood joint state sequence is found
we can infer the source log-power spectrum of each signal and
reconstruct them as shown in [3].

4. Speaker Identification and Gain
Estimation

In the challenge task, the gains and identities of the two speak-
ers were unknown at test time and were selected from a set of34
speakers which were mixed at SNRs ranging from 6dB to -9dB.
We used speaker-dependent acoustic models because of their ad-
vantages when separating different speakers. These models were
trained on data with a narrow range of gains, so it is necessary
to match the models to the gains of the signals at test time. This
means that we have to estimate both the speaker identities and their
gains in order to successfully infer the source signals.

However, the number of speakers and range of SNRs in the
test set makes it too expensive to consider every possible combi-
nation of models and gains. Furthermore we found that the optimal
gain, in the sense of maximum likelihood under our models, dif-
fered significantly from the nominal gains in the test set. Hence
we developed an efficient model-based method for identifying the
speakers and estimating the gains.

The algorithm is based upon a simple idea: identify and utilize
frames that are dominated by a single source to determine what
sources are present in the mixture. The output of this stage is a
short list of candidate speaker IDs and associated gain estimates.
We then estimate the posterior probability of combinations of these
candidates and refine the estimates of their respective gains via an
approximate EM procedure. In this EM procedure we use the max
model of the source interaction likelihood mentioned in section
2.2.

To identify frames dominated by a single source, we model
the signal for each processing framet as generated from a single
source classc, and assume that each source class is described by a
mixture model:

p(yt|c) =
X

g

X
sc

πscπgN (yt; µsc + g,Σsc) (3)

where the gain parameterg takes a range of discrete values
{6, 3, 0,−3,−6,−9,−12} with prior πg, and πsc is the prior
probability of states in source classc. Although not all frames
are in fact dominated by only one source, such a model will tend
to ascribe greater likelihood to the frames that are dominated by
one source. The mixture of gains allows the model to be gain-
independent at this stage.

To form a useful estimate ofp(c|y) we apply the following
simple algorithm:

1. Compute the normalized likelihood ofc givenyt for each
frame

byt
(c) = p(yt|c)/

X
c′

p(yt|c
′). (4)

2. Approximate the component class likelihood by

p(y|c) =
X

t

φ(byt
(c)) · byt

(c), (5)

whereφ(byt
(c)) is a confidence weight that is assigned

based on the structure ofbyt
(c), defined here as

φ(byt
(c)) =

�
1 maxc byt

(c) > γ
0 otherwise

(6)

whereγ is a chosen threshold.

3. Compute the source class posterior as usual via:

p(c|y) ∝ p(y|c)p(c)

This method for estimatingp(c|y) is useful in situations where
there may be many frames that are not dominated by a single
source. In (5) the normalized likelihoods are summed rather than
multiplied, because the observations may be unreliable. For in-
stance, in many frames the model will assign a likelihood of nearly
zero, even though the source class is present in the mixture. The
confidence weightφ(byt

(c)) in (5) also favors frames that are well
described by a single component, that is, where the likelihood
byt

(c) is high for some componentc. Frames that do not have this
property might be misleading if they constitute an overwhelming
majority.

Figure 3 depicts plots of the original spectrograms of the target
and masker speakers along with the normalized likelihoodsbyt

(c)
plotted as a function oft, for a typical test mixture in the SSC two-
talker corpus. From the plots we can see that the likelihood func-
tions byt

(c) are sharply peaked in regions of the mixture where
one source dominates.

Given a short-list of finalists chosen according top(c|y) as
computed above, we identify the present source components by
applying the following max-based approximate EM algorithm to
find the gains and identify the most probable speaker combination:

1. E-Step: Computepi(s
j
t , s

k
t |yt) for all t using the max ap-

proximation (See section 2.2), in iterationi, for a hypothe-
sis of speaker IDsj andk.

2. M-Step: Estimate△gj,i via:

△gj,i = αi

P
t

P
s

j
t ,sk

t
pi(s

j
t , s

k
t |yt)

P
d∈D

s
j
t
|sk

t

△gj,k,d,t

σ2

s
j
t

,sk
t

,dP
t

P
s

j
t ,sk

t
pi(s

j
t , s

k
t |yt)

P
d∈D

s
j
t
|sk

t

1
σ2

s
j
t

,sk
t

,d

(7)
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Figure 3: Plots of the (unobserved) spectrograms of the target and
masker speakers and the computed source class frame likelihoods
byt

(c) (4), for a typical test utterance in the SSC two-talker corpus
(mixed at 0 dB). From the plots we can see that the (normalized)
source likelihoods are sharply peaked in regions of the mixture
where one source dominates.

where△gj,k,d,t = (yd,t − µ
s

j
t ,sk

t ,d
− gj,i−1) , D

s
j
t |s

k
t

is

all dimensions whereµ
s

j
t ,d

−gj,i−1 > µsk
t ,d −gk,i−1, and

αi is a learning rate.

Note that the probability of the data is not guaranteed to increase
at each iteration of this EM procedure even whenαi = 1, be-
cause the joint state posteriorpi(s

j , sk|yt) is not continuous in
gj,i andgk,i: the dimension assignmentDsj |sk changes depend-
ing on the current gain estimate. Empirically however, this ap-
proach has proved to be effective.

Table 1 reports the speaker identification accuracy obtained
on the SSC two-talker test set via this approach, when all com-
binations of the most probable source and the six most probable
sources are considered (six combinations total), and the speaker
combination maximizing the probabilility of the data is selected.
Over all mixture cases and conditions on the SSC two-talker test
set we obtained greater than98% speaker identification accuracy

6 dB 3 dB 0 dB -3 dB -6 dB -9dB All
ST 100 100 100 100 100 99 99
SG 97 98 98 97 97 96 97
DG 99 99 98 98 97 96 98
All 99 99 99 98 98 97 98

Table 1: Speaker identification accuracy (percent) as a function
of test condition and case on the SSC two-talker test set, for the
presented source identification and gain estimation algorithm. ST-
Same Talker, SG-Same Gender, DG-Different Gender.

overall.

5. Recognition using Speaker Dependent
Labeling (SDL)

Once the two signals have been separated, we decode each of the
signals with a speech recognition system that incorporates SDL.

We employed MAP training [12] to train speaker dependent
models for each of the 34 speakers. The Speech Separation Chal-
lenge also contains a stationary colored noise condition, which
we used to test the noise-robustness of our recognition system.
The performance obtained using MAP adapted speaker dependent
models with the baseline gender dependent labeling system (GDL)
and SDL are shown in Table 2. As we can see the SDL technique
(described below) achieves better results than the MAP adapted
system using oracle knowledge of the speaker id.

5.1. Theory of SDL

Instead of using the speaker identities provided by the speaker ID
and gain module directly in the recognizer, we followed the ap-
proach for gender dependent labeling (GDL) described in [13].

Each speakerc is associated with a set,Sc, of 39 dimensional
cepstrum domain acoustic Gaussian mixture models. At a par-
ticular time frame then we have the following estimate of thea
posteriori speaker probability given the speech featurext:

p(ct|xt) =

P
s∈Sc

πsN (xt; µs,Σs)P
c′

P
s∈Sc′

πsN (xt; µs,Σs)
.

SDL does not make the assumption that each file contains only
one speaker, but instead assumes only that the speaker identity is
constant for a short time, and that the observations are unreliable.
The speaker probability is thus averaged over a time window using
the following recursive formula:

p(ct|x1:t)
def
= αp(ct−1|x1:t−1) + (1 − α)p(ct|xt) (8)

for speakerc at time t, and whereα is a time constant. This is
equivalent to smoothing the frame-based speaker posteriors using
the following exponentially decaying time window.

p(ct|x1:t) =
tX

t′=1

(1 − α)αt−t′p(ct′ |xt′), (9)

The effective window size for the speaker probabilities is given by
α/(1 − α), and can be set to match the typical duration of each
speaker. We choseα/(1 − α) = 100, corresponding to a speaker
duration of 1.5s.



Equation (8) can also be interpreted as forward inference in
a model that consists of a probabilistic mixture of two conditions
at each time point. The first term corresponds to the assumption
that the observationxt is unreliable and the speaker idct is the
same as the previous time step. The second term corresponds to
the assumption that the observation is reliable and the speaker id
ct is independent of the previous time step. The valueα represents
the prior probability of each condition at each time step. Such a
system can be more robust than a system that simply assumes the
speaker is unlikely to change over time.

The onlinea posteriori speaker probabilities are close to uni-
form even when the correct speaker is the one with the highest
probability. We can remedy this problem by sharpening the prob-
abilities to look more like 0-1 probabilities. The boosted speaker
detection probabilities are defined as

πct = p(ct|x1:t)
β/
X
c′

p(c′t|x1:t)
β . (10)

We usedβ = 6 for our experiments. During decoding we can
now use the boosted speaker detection probabilities to give a time-
dependent Gaussian mixture distribution:

GMM(xt) =
X

c

πctGMMc(xt).

As can be seen in Table, 2 the SDL system outperforms the oracle
system3.

System Noise Condition
clean 6dB 0dB -6dB -12dB

HTK 1.0 45.7 82.0 88.6 87.2
GDL-MAP I 2.0 33.2 68.6 85.4 87.3
GDL-MAP II 2.7 7.6 14.8 49.6 77.2
oracle 1.1 4.2 8.4 39.1 76.4
SDL 1.4 3.4 7.7 38.4 77.3

Table 2: Word error rates (percent) on the SSC stationary noise
development set. The error rate for the “random-guess” system is
87%. The systems in the table are: 1) The default HTK recog-
nizer, 2) IBM–GDL MAP–adapted to the speech separation train-
ing data, 3) MAP–adapted to the speech separation training data
and artificially generated training data with added noise, 4) Oracle
MAP adapted Speaker dependent system with known speaker IDs,
5) MAP adapted speaker dependent models with SDL.

6. Experiments and Results
The Speech Separation Challenge [1] involves separating the
mixed speech of two speakers drawn from of a set of 34 speakers.
An example utterance isplace white by R 4 now. In each record-
ing, one of the speakers sayswhite while the other saysblue, red
or green. The task is to recognize the letter and the digit of the
speaker that saidwhite.

Using the SDL recognizer, we decoded the two component
signals under the assumption that one signal contains white and
the other does not, and vice versa. We then used the association
that yielded the highest combined likelihood.

3No prior knowledge of the speaker ID or noise condition was used in
generating the results (save the oracle system).

Log-power spectrum features were computed at a 15 ms rate.
Each frame was of length 40 ms and a 640 point FFT was used, and
the DC component was discarded, producing a 319-dimensional
log-power-spectrum feature vector.
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Figure 4: Word error rates for the a) Same Talker, b) Same Gender
and c) Different Gender cases. All results were decoded using the
SDL recognizer.

6 dB 3 dB 0 dB -3 dB -6 dB -9dB total
ST 31 40 47 43 45 57 43.8
SG 9 9 10 12 14 23 12.9
DG 9 7 9 12 16 25 12.9
All 17.3 19.8 23.3 23.2 25.9 36.1 24.3

Table 3: Word error rates (percent) for grammar and acoustic con-
straints. ST-Same Talker, SG-Same Gender, DG-Different Gender.
Conditions where our system performed as well or better than hu-
man listeners are emphasized.

Figure 4 shows results for the: a) Same Talker, b) Same Gen-
der, and c) Different Gender conditions. Human listener perfor-
mance [1] is shown along with the performance of the SDL recog-
nizer applied to: 1) the unprocessed mixed features, and the signals
obtained from the separation system 2) without dynamics 3) using
acoustic level dynamics, and 4) using both grammar and acoustic
level dynamics.

The top plot in Figure 4 shows word error rates (WER) for the
Same Talker condition. In this condition, two recordings from the
same speaker are mixed together. This conditions best illustrates
the importance of temporal constraints. By adding the acoustic
dynamics, performance is improved considerably. By combin-
ing grammar and acoustic dynamics, performance improves again,
surpassing human performance in the−3 dB condition.

The second plot in Figure 4 shows WER for the Same Gender
condition. In this condition, recordings from two different speak-
ers of the same gender are mixed together. In this condition our
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Figure 5: Word error rate of system relative to human performance.
Shaded area is where the system outperforms human listeners.

system surpasses human performance in all conditions except6
dB and−9 dB.

The third plot in Figure 4 shows WER for the Different Gender
condition. In this condition, our system surpasses human perfor-
mance in the0 dB and3 dB conditions. Interestingly, temporal
constraints do not improve performance relative to GMM without
dynamics as dramatically as in the same talker case, which indi-
cates that the characteristics of the two speakers in a short segment
are effective for separation.

The performance of the Iroquois model, which uses both
grammar and acoustic-level dynamics, is summarized in Table 3.
This system surpassed human lister performance at SNRs of0
dB to −6 dB on average across all speaker conditions. Averag-
ing across all SNRs, the Iroquois model surpassed human per-
formance in the Same Gender condition. Based on these initial
results, we envision that super-human performance over all condi-
tions is within reach.

7. Discussion
The absolute performance of human listeners is shown in Figure
4. As expected, human listeners perform well when the amplitude
of target speaker is considerably higher than the masker. Surpris-
ingly, human listeners also perform well when the target speaker
is speaking at a lower amplitude than the masker. Human subjects
perform worst when the speakers are at a similar amplitude. Fig-
ure 5 shows the relative Word Error Rate (WER) of our system
compared to human subjects. The same general trend can be seen
all three cases (Same Talker, Same Gender and Different Talker).
The system performs poorly compared to human subjects when
the target speaker is relatively strong. This is to be expected since
state of the art ASR systems cannot match human performance for
letter recognition.

However, the Iroquois model performs relatively well when
the amplitude of the signals is similar. Remarkably, in theSame
Gender condition, the system is up to 50% better than human sub-
jects. It seems that the human auditory system employs different
cues and strategies for accomplishing recognition in these condi-
tions. Perhaps human listeners are better able to make use of dif-

ferences in amplitude as a cue for separation.
It is our hope that further experiments with both human and

machine listeners will provide us with a better understanding of the
differences in their performance characteristics. This may provide
insights into how the human auditory system functions, as well as
how automatic speech recognition can be brought to human levels
of performance.
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